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How to forecast the electrical behaviour
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The theoretical models that might be used to forecast the electrical behaviour of ionic
conductor composites for application in SOFCs are reviewed. A comparison of the different
models is performed and comparative analysis of their power is presented on the basis of a
case simulation (YSZ (7,54 mol%Y2O3)-Al2O3 (5 wt%) composite). The lack of systematic
experimental works makes a wide comparison with the theoretical results very difficult, so
the real power of the models can not yet be fully assessed and only introductory
considerations are tentatively given. Nevertheless from the preliminary results, it seems
possible to affirm that Electrical Network Models are able to better sustain the simulation of
the electrical properties of YSZ-Al2O3 composites. Certainly many other improvements
have to be done before ENMs became confident tools for tailoring “ab initio” the electrical
properties of two phase mixtures. C© 2001 Kluwer Academic Publishers

1. Introduction
In recent years, the practical importance of solid ionic
conductors has continuously increased in view of their
application in batteries and fuel cells, devices whose
role is strategic in the development and exploitation of
new large and small power sources [1–3]. Nowadays
only a few well-established solid electrolytes are on
the market and the research is very active either in look-
ing for new compounds (i.e. polymer proton conduc-
tors and intermediate-temperature oxide ion conduc-
tors [4, 5]) or in improving the properties of the utilised
materials. The recent investigations on the yttria stabi-
lized zirconia (YSZ)-Al2O3 composites are certainly a
proper case for giving an example of the latter state-
ment.

Up to now a zirconia-doped (8%mol Yttria, 8YSZ)
ceramic is the only electrolyte actually used in Solid
Oxide Fuel Cell (SOFC) prototypes and forthcoming
commercial devices [6, 7]. During the last twenty years
many research efforts [8–28] have been devoted to
optimise electrochemical, thermal and microstructural
properties of YSZ. Nevertheless some problems arose
in developing planar configuration devices [29, 30],
where the stacking of electrolyte sheets and intercon-
nect plates induces high mechanical stresses, which of-
ten results in fractures; indeed, cubic 8YSZ suffers from
poor mechanical properties [26, 29, 31].

In order to strengthen the YSZ the addition of a
secondary phase (chromia [32–34], sodiumβ-alumina
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[35], silicon carbide [36] andα-alumina) was sug-
gested; the attention was mainly focused onα-alumina
for its high elastic modulus, low partial solubility in
ZrO2 (<1%), high temperature stability and electrical
insulating behaviour.

The α-alumina, originally added in small amounts
(less than 2%mol) as a sintering aid [8], showed an in-
crease in the electrical conductivity [37], acting as a
SiO2 impurity scavenger [9]. However larger amounts
of secondary phase have to be blended in order to
reach sufficient bending strength [38]; unfortunately
high concentrations of this insulating phase increase
the electrical resistance of such composites. The in-
fluence of theα-alumina on the electrical conductivity
of the composites is not yet well explained and poor
agreement is observed in experimental results. For in-
stance, Moriet al. [39] found the conductivity of 10wt%
Al2O3 composites to be∼0.1 S/cm at 1000◦C and of
∼0.04 S/cm at 830◦C, about 30% lower than that ob-
served in 8YSZ, at the same temperatures. Navarroet al.
[40] measured∼0.16 S/cm, about 50% less than 8YSZ,
at 1000◦C; Natali Soraet al. [41]∼0.03 S/cm, at 850
◦C. On the contrary, Feighery and Irvine [42] showed
that at 1000◦C up to 10wt% of alumina can be added
without any significant decrease in the conductivity;
Yuzaki and Kishimoto [43] reported a slight increase
in conductivity with alumina addition up to 10mol%; Ji
et al. [44] stated that 4 wt% of alumina gives the highest
grain boundary conductivity.
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These conflicting and inhomogeneous data might re-
sult from the actual purity of the added insulating phase
as well as from the shortage of a detailed analysis of
the composites microstructure, which can play an im-
portant role in the total (bulk+ grain boundary) con-
ductivity. If one gives credit to the latter hypothesis,
a rational approach might be taken into account for an
optimised tailoring of the above mentioned composites.
Unfortunately few models were and have been devel-
oped to predict the electrical behaviour of two phase
systems and still less to manage the YSZ-Al2O3 com-
posites.

The theoretical interest in simulating the electrical
properties of ionic conductor composites largely arose
after Liang [45] observed an improvement of three or-
ders of magnitude in the ionic conductivity of LiI when
mixed with Al2O3; such behaviour was later confirmed
in many other compounds [46]. The phenomenon was
attributed to a space-charge layer formation along the
internal interfaces between the different phases [47, 48].
Models based on random resistor networks and perco-
lation theory [49] were, for the first time, used to define
the macroscopic aspects of the electrical properties of
these heterogeneous solid electrolytes [50–52]. Succes-
sively similar random resistor network models were ex-
tended to simulate the a.c. behaviour of the same com-
posites [53, 54]. Since then, several approaches were
designed to investigate the a.c. electrical response of
inhomogeneous systems [55–64].

The aim of the present paper is to review the theoret-
ical models, which were and might be used to forecast
the electrical behaviour of ionic conductor composites
for application in SOFCs. The different models and the
comparative analysis of their power is presented. The
lack of systematic experimental works makes a com-
parison with the theoretical results very hard, so the real
power of the models is not yet fully assessed and only
preliminary considerations are given.

2. Modelling review
The problem of simulating the electrical behaviour of
two phase systems and composites can be managed in
a rigorous way calculating the impedance by the actual
potential distribution within the material; in other words
solving the classical Laplace’s equation:

∇ · Ej ≡ ∂28

∂x2
+ ∂28

∂y2
+ ∂28

∂z2
= 0 (1)

whereEj is the current density and8 the scalar electrical
potential.

The puzzling geometry of the composites makes the
solution of the equation very difficult. Nevertheless the
conductance of a two-phase mixture is evaluated by
solving the equation within each phase and forcing the
continuity for potential and flux at their boundaries. In
principle, the resulting differential problem is numeri-
cally solved with any desired accuracy, but in practice
it cannot be done for its complexity. The numerical
solution of this type of differential equation has been
reconsidered recently. The powerfulness of the Finite
Element Method (FEM) [65], which can be applied to

any geometrical domain and optimised by using adap-
tive algorithms, has been the key element. The FEM
solves systems of differential equations by approxi-
mating the solution through a sequentially continuous
polynomial function. This technique was very recently
also applied to outline the grain boundary influence on
impedance spectra of polycrystalline solid electrolytes
[66–69]. Unfortunately, in the case of composite mate-
rials the application of FEM is even more difficult for
the larger number of interfaces and grain boundaries.

For the above mentioned reasons, the simulation of
the electrical behaviour of composites was performed
by less rigorous approaches, namely: continuous and
discrete medium models. Generally, the continuous
models starting from the classical Maxwell equations,
through some assumptions, generate an analytic equa-
tion where any composite property (i.e. the conductiv-
ity) is a function of the analogous properties of the pure
components:σc= f (σ1, σ2). Effective Medium Theory
(EMT) and percolation theory are the most common
rationalisations.

The discrete medium models, much more complex
approaches, simulate the electrical behaviour convert-
ing the composite into a 2D or 3D network (constituted
of discrete electrical elements) and solving a set of al-
gebraic equations. The classical Laplace’s condition on
static current distribution (∇ · Ej = 0) becomes, as out-
lined by Kirkpatrick [49], the simple Kirchoff’s cur-
rent law equation, thus providing the theoretical foun-
dations of these models. The main differences among
these models can be ascribed either in the way of arrang-
ing the discrete electrical elements inside the electrical
networks or in the choice of the representative circuits.

Some other semi-empirical models have been devel-
opedad hoc to describe particular phenomena or to
simulate specific materials [55, 64, 70]. In the follow-
ing, only the models that were, are and might be used to
forecast the electrical behaviour of oxygen ionic con-
ductor composites will be considered and discussed.

2.1. Continuous medium models
Several methods have been developed to describe
the electrical behaviour of heterogeneous materials
[71, 72], among which the most widely applied in the
past years were the Maxwell and the Bruggeman mod-
els. They were mainly used to describe the d.c. or low-
frequency electrical properties of composites [73, 74],
and only occasionally extended to the a.c. behaviour
[56, 75, 76].

The two- or brick-layer model (BLM), designed by
Maxwell [77], is the simplest way to outline the a.c. be-
haviour of a composite that is pictured as two contigu-
ous sheets of different media. An attractive feature of
this model is its physical simplicity: the two phases are
arranged as a set of alternate flat sheets, perpendicular
to the current flow, so that low conductance regions are
accounted for. The analytical expression of the overall
admittance,YC, is:

1

YC
= ϕ1

Y1
+ ϕ2

Y2
(2)

Y1 and Y2 (Y= σ + j ωε, σ the conductivity,ω the
angular frequency andε the permettivity) are the
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admittance of the two phases,ϕ1 and ϕ2 their layer
thickness, which can be converted into the volume frac-
tions of the two constituents, by normalisation. The
electrical response fits a two RC parallel circuit.

Maier [78] suggested a set of three phases (ion con-
ductor, insulating material and space-charge region) in
parallel; so the overall admittance is:

YC = β1ϕ1Y1+ β2ϕ2Y2+β3ϕ3Y3 (3)

whereβis are dimensionless parameters, describing the
deviation from the ideal parallel switching. A similar
approach was adopted by Uvarovet al. [59], which
proposed an equation where the total conductance of
a composite is expressed as the sum of the conduct-
ing phase bulk contribution and of the different space-
charge regions (host-host and host-dispersoid).

Another model, proposed by Maxwell [71, 72, 77]
for mixtures of purely resistive materials and later ex-
tended by Wagner (MWM) to mixtures of materials
having dielectric and resistive behaviour [75], consists
in a dispersion of particles (phase 1) in a continuous
medium (phase 2). The particles are assumed to be
sufficiently separated (dilute limit) and not interacting.
When phase 1 can be pictured as spherical inclusions,
the model gives:

YC = Y1
2Y1+ Y2− 2ϕ2(Y1− Y2)

2Y1+ Y2+ ϕ2(Y1− Y2)
(4)

ϕ1 andϕ2 are again the volume fractions. This equation
does not work in the case of binary mixtures close to
percolation threshold. The model was later extended to
cover spheroidal [79] and ellipsoidal particles [80].

Both the BLM and MWM are able to describe sys-
tems with two different relaxation processes so that they
might be used when two semicircles appear in the exper-
imental impedance spectra. Quite recently, Equation 4
was used to study the electrical response of YSZ/Al2O3
composites [76] on a qualitative basis.

Effective medium theory (EMT) is a self-consistent
procedure to calculate the electrical properties of a
composite through sequential approximations [71, 72],
that are related to the actual electrical property of
each phase. The models coming from this theoret-
ical approach had great success for their flexibility
and good prediction results in the d.c. regime. Among
them Bruggeman’s symmetric and asymmetric effec-
tive medium theories (BSEMT and BAEMT, respec-
tively) are certainly the most famous [71–73].

In the BSEMT the two phases are depicted as differ-
ent size spheres which are arranged in such a way as to
completely fill the entire composite medium (Fig. 1);
so [81, 82]:

ϕ1
Y1− YC

Y1+ 2YC
+ ϕ2

Y2− YC

Y2+ 2YC
= 0 (5)

According to the above assumptions, at least one phase
is always percolating; both of them have a 3-3 connec-
tivity for intermediate (about 1/3 <ϕi < 2/3) compo-
sition [73]. With the proper modifications, Equation 5

Figure 1 Schematic representation of the composite in Bruggeman’s
symmetric effective medium theory (BSEMT).

can be applied to systems of any dimensionality [72] as
well as to ellipsoidal particles [83]. This model is also
easily extended to multi-component systems [72].

In the BAEMT the entire composite medium is filled
with different size spheres of one component and a uni-
form shell of the other one surrounds each of them
(Fig. 2); only the shell component is able to percolate.
The following equation is obtained [72]:

(YC− Y2)3

YC
= (1− ϕ1)3(Y1− Y2)3

Y1
(6)

where 1 and 2 refers to core and shell phase, re-
spectively. Unfortunately this equation which becomes
manageable only in the d.c. regime is not as easily
solved as Equation 5.

It is interesting to note that BSEMT and BAEMT
become the already described MWM model when very
dilute mixtures are considered.

Another tool to picture the conductivity in both
conductor-insulator blends and high-low conductiv-
ity phase mixtures is the percolation theory [84] that
leads to:

σ ≈ σ1(ϕ1− ϕc)
t (7)

whereσ1 is high conductivity phase electrical property
andϕc the critical volume fraction. The latter parame-
ter as well ast can be numerically calculated according
to bond or site percolation models [73, 84, 85]. Equa-
tion 7 can be applied near to the percolation threshold
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Figure 2 Schematic representation of the composite in Bruggeman’s
asymmetric effective medium theory (BAEMT).

and it is only able to correlate experimental data, so no
predictions can be drawn. The model has been extended
to issues where the conductivity is frequency dependent
[57, 86].

In the eighties, McLachlan [73] proposed a general
effective media equation (GEM) to describe composite
systems. The GEM, in addition to usual independent
variables (Yi andϕi ), contains the same parameters (ϕc
andt) of the percolation equation:

ϕ1
(
Y1/t

1 − Y1/t
C

)
Y1/t

1 + AY1/t
C

+ ϕ2
(
Y1/t

2 − Y1/t
C

)
Y1/t

2 + AY1/t
C

= 0 (8)

whereA= ϕC

1−ϕC
. The two parameters,ϕc andt , as in

the percolation theory, are the critical volume fraction
of the poorly conducting phase and the factor account-
ing for the distribution (oriented, partially oriented or
random) and the shape of the particles. Unfortunately
the two parameters,ϕc andt , are difficult to calculate
and can only be obtained by fitting the GEM equation
to experimental data; then the equation itself cannot be
predictive.

This equation is, in principle, valid at any volume
fraction and not only near the percolation threshold. In
fact, it was not derived from any physical model, but
from the extension of EMT to specific cases. It was
demonstrated, just in the d.c. regime, that under proper
assumptions Equation 8 becomes the BLM, BAEMT or
BSEMT [73]. Until now GEM has been mainly applied
to describe the conductivity of insulator and purely re-
sistive conductor mixtures [73, 87, 88].

2.2. Discrete medium models
At the beginning, these models were used to calcu-
late the parameters of the percolation equation [49, 85]
and only later they became self-standing approaches
to simulate the electrical properties [50–54]. Such a
technique, named the electrical network model (ENM),
has been used in computational materials science to
simulate the electrical response of cement-based sys-
tems [89], Ni-YSZ cermets [90–92] and ionic conduc-
tor composites [60, 93–95].

The conversion of the system into a 2D- or 3D-
electrical network (constituted of discrete circuit ele-
ments) and its solution by a computing procedure are
the working principles. Generally, the electrical net-
work is generated connecting the sites of a lattice, su-
perimposed to the material, by discrete electrical circuit
(i.e. parallel RC), each of them describing the electri-
cal behaviour of any different phase. Random [90–92]
and ruled [60, 89, 93–95] distributions of the electrical
circuits characterise the different models.

Some distributions take into account the composite
microstructural features that can be derived from digital
image [89] or by simulation [93, 95]; the latter approach
allows “ab initio” modelling and suitable tailoring of
the composite might be hypothesised.

The electrical network characteristics are obtained
by Kirchoff’s current law, solving either a set of linear
equations [96] or an iterative-adjusted matrix [97]. Both
the methods have advantages and drawbacks; the for-
mer is less time consuming while the latter always gives
convergence and is more stable. The use of these sim-
ulations is not trivial: the computing procedure is hard
and the algorithms have to be developedad hoc; nev-
ertheless reliable results seem to be obtained. In partic-
ular, the impedance spectra of Al2O3/YSZ composites
were simulated and good agreement with experimental
data achieved [93, 95, 98, 99].

Other models are not considered here because some
are useless for practical applications [100–103] and
some others were designed for specific inhomogeneous
materials [104, 105].

3. Results and discussion
In order to evaluate the reliability and the forecasting
power of the different models they were tentatively
applied to the Al2O3/YSZ composites. In particular,
some Impedance Spectroscopy (IS) spectra were simu-
lated and compared with the experimental data. Among
the reviewed models only those having a predictive in-
trinsic nature have been chosen. Some can be easily
used while others need a more structured approach;
the latter are of course more time consuming. Such
characteristics in addition to accuracy and flexibility
might contribute to defining a figure of merit for each
model.

Cubic YSZ (7,54 mol%Y2O3)-Al2O3 (5 wt%) com-
posite, whose experimental electrical properties (bulk
and grain boundary conductivity) [41] and microstruc-
ture [106] are known, was chosen as a reference to
compare the results of the simulations.

In the case of BLM, MWM and BSEMT it is impossi-
ble to take into account the grain boundary contribution,
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no term referring to it is contained in the analytical
equations. It should be possible to add a third term,
but the conductivity and the volume fraction amount
of the grain boundary are difficult to define: particle
size does not enter in the model and a true phase is
not present. For this reason bulk electrical conductiv-
ity and the real part of the permettivity (dielectric con-
stant) of each phase as well as the volume fractions were
the only input parameters. The electrical properties of
YSZ (σYSZ= 2.9× 104 Ohm cm,εYSZ= 8.0× 10−11

F/cm) and Al2O3 (σAl2O3= 1.0× 1014 Ohm cm,
εYSZ= 8.0× 10−13 F/cm) were obtained from experi-
mental data performed on polycrystalline samples [41,
106] and from the literature [107], respectively. The
models clearly fail in reproducing the electrical be-
haviour of the composite; the two semicircles of the
experimental spectrum do not appear in the simulated
ones (Fig. 3a, b and c). The total (bulk+ grain bound-
ary) experimental resistivity is always larger than the
calculated one. One never obtains a complete separa-
tion of the two semicircles using the dielectric constants
actual values; two distorted semicircles appear in the
spectrum only when the insulating phase volume frac-
tion is greater than 0.2. This is an artefact: the grain
boundary is not simulated, but it is the contribution of
the second phase that appears; the same behaviour has
already been noted by Kleitzet al. [71].

The simulation obtained by running the BLM
(Fig. 3c) shows a straightline in the experimental fre-
quency range (1–107 Hz). This is not surprising be-
cause, according to this model, the current flux is also
forced to cross the small amount (ϕAl2O3 ≈ 0.1) of in-
sulating phase and lower frequencies are necessary to
observe the semicircle due to the alumina. A more de-
tailed analysis points out the existence of a distorted
semicircle, at the highest frequency (Fig. 3d), the pres-
ence of which is due to the YSZ. This model appears
more powerful than MWM and BSEMT; the electrical
properties of the two phases are evidenced. Again, the
grain boundary can not be simulated.

To overcome the inadequacy of the models above
mentioned, one might use Maier’s model [78] that does
not take into account the grain boundary contribution,
but it introduces a term representing the space charge
region. Nevertheless, the difficulty to manage this ap-
proach arises in assigning the grain boundary proper
values ofβi, ϕi andYi . In particular,ϕi andYi might
be evaluated according to assumptions similar to those
proposed by Maier. Theβi value is really very difficult
to forecast, being associated to the distribution topol-
ogy of the dispersed phase. At the present, the lack of
any method able to reliably defineβi values for ionic
conductor composites invalidates the predictive nature
of the model; for this reason Maier’s model was not
applied here. The same reasoning applies to Uvarov’s
model [59].

The ENMs work withad hocsoftware codes that gen-
erally are not common knowledge; thus only one model
was used to perform the simulation [93, 95]. The mi-
crostructure simulation, the conversion into a 3-D elec-
trical network and the impedance calculation are the
main steps of the procedure. The Voronoi tessellation

(a)

(b)

(c)

(d)

Figure 3 Experimental (h) and simulated (m) IS spectrum of YSZ (7,
54 mol%Y2O3)-Al2O3 (5 wt%) composite, atT = 614 K. The simulated
spectrum was obtained by: (a) MWM model, (b) BSEMT model and
(c) BLM model; (d) expanded view, at lower frequencies, of (c).
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Figure 4 Experimental (h) and simulated (m) IS spectrum of YSZ (7,
54 mol%Y2O3)-Al2O3 (5 wt%) composite, atT = 614 K.

was used to depict the polycrystalline microstructure,
well defined rules were applied to generate the electri-
cal network (constituted of RC parallel circuits) and
the transfer-matrix method was run to calculate the
impedance spectra. The grain boundary contribution
was accounted for in the network generation.

By least square fitting of the experimental IS spec-
tra of any YSZ-Al2O3 composite, theR andC values
of YSZ grain boundary and bulk can be evaluated and
successively used. TheR andC value of YSZ bulk can
be also obtained from polycristalline YSZ. The elec-
trical properties of alumina were taken from literature.
The microstructure simulation was performed in such a
way to reproduce the experimental average grain sizes
(YSZ≈ 5 µm, Al2O3 ≈ 1 µm).

A comparison between simulated and experimental
IS spectra is reported in Fig. 4; as one can observe
a fairly good agreement exists; this model is able to
generate a two semicircle spectrum, representing the
bulk and the grain boundary of YSZ, respectively.

The forecasting power of the ENMs clearly appears
from this result; the capability of simulating an exper-
imental spectrum is not their unique prerogative, but
the electrical properties of a composite as a function of
its microstructure and composition is, in principle, an
additional distinctive feature. The flexibility was previ-
ously shown when the influence of both YSZ and Al2O3
grain size on the electrical properties of the composites
were simulated with promising and challenging results
[99].

Unfortunately the lack of extended and systematic
experimental works makes a wide comparison with
the theoretical results very hard, so the real power of
these ENMs can not yet be fully assessed. However
from the preliminary results, it seems possible to af-
firm that the Electrical Network Models better sustain
the simulation, even if they are much more demanding
in software codes and in computing time.

The current version of the ENM is certainly not
optimised and many other improvements have to be
implemented before they might become suitable and
confident theoretical tools for tailoring “ab initio”
the electrical properties of composites, nevertheless
this approach appears, at the present, to be very
promising.
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